モアレ現象を応用した情報カモフラージュ技法と OOH メディアへの応用

Moiré Camouflaging Method to Blend Information into Background

木下 里奈¹, 大平 麻以², 田中 浩也² Rina KINOSHITA¹, Mai OHIRA², Hiroya TANAKA²

1慶應義塾大学大学院,2慶應義塾大学

¹Keio University Graduate School, ²Keio University

【要約】

本研究では、立体構造と画像の2層の縞模様を重ね、モアレ現象を応用して特定の視点からは情報が見え、その 視点以外からは情報が背景にカモフラージュする技法を開発した。また、OOHメディア(屋外広告)への応用を提案す る。具体的な掲示内容として QR コードが考えられる。この技法の特徴は、特定の視点からのみ情報が見られること、 背景に応じたテクスチャに情報がカモフラージュすること、ダイナミックな動きや奥行き感によって目を引くこと、制作後 は機械を必要としないことである。この技法により、人々の目を引きながらも景観を損ねない OOH メディアが展望とし て挙げられる。

キーワード: モアレ、カモフラージュ、OOH メディア、テクスチャ、表現

[Abstract]

In this study, we propose a method in which information is visible from a certain viewpoint but blends in the background when viewed from other viewpoints, using the phenomenon of moiré fringe appearing by superimposing a 3D structure of line gratings and an image of line gratings. We propose its application to OOH (Out of home) media that shows a QR code as its content. The characteristics of this method are that the content can be seen only from a specific viewpoint, that the information camouflages into the texture of the background, that it catches the eye through dynamic movement and a sense of depth, and that no machinery is used after production. This gives the prospect of an OOH medium that catches people's eyes but does not spoil the landscape.

Keywords: Moiré, Camouflage, OOH Media, Texture, Expression

1. 序論

OOH メディア(屋外広告)は、快適な景観を構成する 重要な要素で、大きな影響を与える。快適な景観は、自 然、歴史、文化、経済活動など、その場を構成する様々 な要素との調和によって形成される。情報を見せること が優先されない場所では、OOH メディアは目立たず存 在感を消すことが望まれる。例えば、歴史的建造物が 景観の重要な要素と指定される京都の一部の地域では、 OOHメディアは景観と不調和な色は条例で規制され[1]、 景観に溶け込むような色を用いたデザインが採用され ている。一方で経済活動が重要とされる地域では、大型 のデジタルサイネージに錯覚を利用した誘目性の高い 屋外広告が活用されている[2]。そこで我々は、情報と 景観の調和を図る新たな情報表示の方法の模索に可 能性を感じた。具体的には、特定の視点から情報を見 えるようにし、他の視点では背景にカモフラージュする 技法を模索する。

2. 関連研究

必要な情報を表示したり隠したりする方法として、モ アレ縞が研究されてきた。モアレ縞とは、周期の似た複 数のパターンを重ね合わせた際に、周期のずれによっ て生じる干渉縞である。モアレ縞を指定の形状に近似さ せる研究がされてきた[3][4]。モアレ縞は複数パターン が重なった際に現れる模様であるため、これらの技法で は、レイヤーを取り除くことで情報を隠すことができる。し かし、これらの技法では視点を変えることで情報を隠す ことはできない。mQRcode[5]では、QR コードはノイズの ようなパターンの中に隠され、特定の視点で撮影すると、 ノイズパターンとカメラの撮像素子のカラーフィルターア レイがモアレを起こし、QR コードを可視化させる。可視 化された画像はカメラ越しにしか見られず、人間の目で 直接見ることはできない。

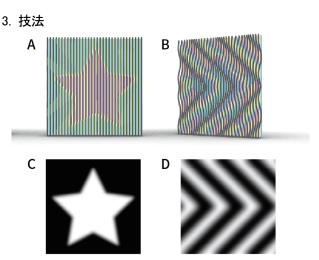


図 1.A) 可視点から見える情報 B)他の視点から見える歪ん

だ絵柄 C,D) 設計時に入力するグレースケール画像の一例

本技法ではモアレ現象を利用し、ある視点には情報 を表示し、他の視点には表示情報を任意のテクスチャ に歪ませた絵柄を表示する。本研究では表示情報が見 える視点を可視点と呼ぶ。モアレを発生させるために、 立体構造である機能層と、平面画像であるベース層を 重ね合わせている。どちらの層も曲線が等間隔に並ん でいる。

3-1. ベース層

ベース層は、表示させたい情報と色が潜在する縞模 様である。特定の周期を持つ縞模様を重ね合わせた時 に発生するモアレにより、表示情報が干渉縞として顕在 化する。

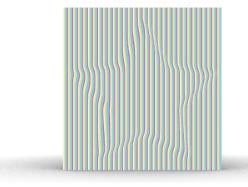


図 2. ベース層

3-2. 機能層

機能層は情報を表示させた状態と、歪ませた状態を、 見る視点によって変化させる機能を持つ縞模様である。 具体的には、見る角度によって機能層の線の形状が変 化して見える。可視点から構造を見ると、機能層は直線 が一定間隔に並んで見え(図 3A)、可視点以外から見る とうねった曲線が並んで見える(図 3B)。可視点から見え る直線は、ベース層に潜在する絵柄を顕在化する縞模 様の周期を持っているため、情報が表示される。

可視点以外から見えるうねった曲線は、ベース層の 縞模様を歪ませるものである。この曲線は、可視点から 構造を見たときに、線が歪まず直線に見えるようにする ために、可視点に向かって湾曲している。従って、上面 から見た時に機能層の曲線は等間隔に並んでいるもの の互いに平行に並ぶのではなく、可視点に向かって傾 いている(図 3C)。

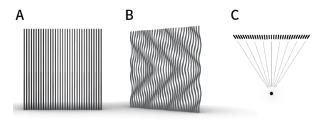


図 3. A) 可視点からの見た機能層 B) 可視点以外の点から見

た機能層 C)上面から見て曲線が可視点に向かって湾曲してい るイメージ図

3-3. 表示情報とカモフラージュ模様の指定

本研究では機能層とベース層の設計の入力として、 グレースケール画像を用いる。ピクセルの値(明るさ)を 曲線の歪みの大きさに変換している。カラー画像を用い る場合は、画像をグレースケールに変換する。

4. アプリケーション

応用先として、表示情報が背景のテクスチャにカモ フラージュする OOH メディアを提案する。

具体的な表示情報として、QR コードを用いることが 考えられる。2030年までに訪日外国人旅行者数を 6,000万人まで増加させる目標を掲げられている現在、 受け入れ環境整備の一環としてOOHメディアの多言語 化が急がれる。QR コードはスマートフォンの純正カメラ アプリから誰でも読み取れるという利点があり、掲示でき る情報量が限られる広告物の多言語化の策として挙げ られる。しかし、直線的で異質な見た目により景観を損 ねるという課題がある。そこで、見える必要のある視点以 外では情報がカモフラージュする本技法のQRへの応 用を提案する。

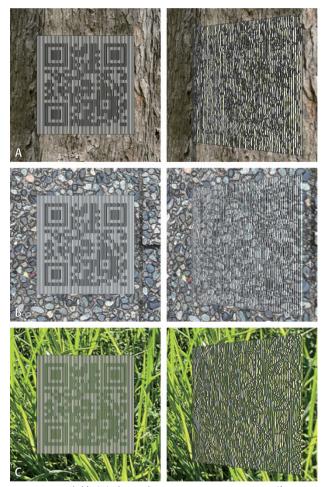


図 4. 本技法を応用した QR コードサインの CG 画像 A)木 B)石畳 C)草

図 5. QR コードサイン単体の CG 画像

図 4、5 は木、石畳、草原に設置する OOH メディア を想定して制作した CG である。図 4 の左側の図は可視 点から見たサインで、表示情報である QR コードが見え、 右側は図は可視点以外からの見たサインで、それぞれ の背景に応じたテクスチャに表示情報が歪む。

5. ファブリケーション



図 6. 第4章で提案した木の QR コードサインのプロトタイプ

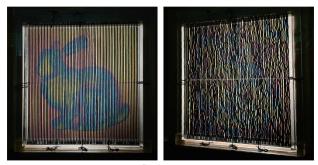


図 7. スタンフォードバニーのグレースケール画像から作成したプロト タイプ

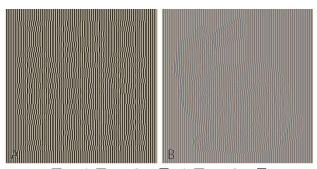


図 8. A) 図 6 のベース層 B) 図 7 のベース層

レーザーカッターを用いて機能層の制作を試みた。 ベース層は紙に印刷し、バックライトを当てている。 サインの表示面の大きさは 230mm×230mm で、機 能層の曲線の幅と間隔は共に 1.5mm である。曲線のパ ーツは枠の溝に噛み合わせ、角度と位置を固定した。 曲線のパーツの歪みを抑えるための工夫として、中央 に柱を入れた。曲線のパーツは ABS 板を切り出し、枠 にはアクリル板を使用した。

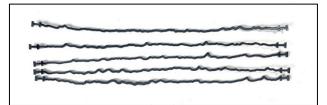


図 9. レーザーカットした機能層の 1.5mm の曲線パーツ

図 10. 曲線パーツを枠に位置と角度を固定する様子

第4章で提案する木に設置するQRコードのサイン (図4)のプロトタイプを制作すると(図 6)、可視点からは QRコードのような絵柄が見えたが、機械で読み取れる ほどの精度は得られなかった。機能層の曲線パーツの 僅かな反りにより、可視点からは一定間隔に並んで見え るはずの直線の縞模様が、少し歪み不規則に並んでい る箇所がある(図 11)。

図 11. プロトタイプの機能層

次に CG 用の試験モデルとして使われるスタンフォ ードバニー[5]の画像を使用し、それを表示するサイン のプロトタイプを制作した(図 7)。図 8 のベース層ではほ とんど見えなかったウサギの絵柄が見えるようになった。 白黒の QR コードと違いグレースケールの絵柄なため、 凹凸が色として現れ立体的に見える。

6. 結論

6-1. 本技法の特徴

プロトタイプの制作を通して、本技法に4つの特徴が あると考えた。

・ 特定の視点からのみ情報が見られる

可視点から見ると、ベース層と機能層の縞模様が モアレを起こし、表示情報がモアレ縞として見られ るようになる。

背景に応じたテクスチャに情報がカモフラージュする

可視点以外から見ると、機能層のうねった曲線によりとベース層との縞模様の周期が乱れ、表示情報 が歪んで見られなくなる。

ダイナミックな動きや奥行き感によって目を引く
見る角度によって見える色や形が変化する。また僅かな差でも変化するため、目の位置の左右差でも
見た目が変わる。両眼に異なる像が映されるため、
不思議な奥行き感がうまれ、目を惹く。

制作後からは機械を必要としない 上記の特徴はモアレという単純な現象によって引き 起こされる。そのため人感センサーなどの機械は使 用せずに実現する。ただし、バックライトは必要とす る。

6-2. 本技法の課題と展望

本技法で高い精度を要する情報を表示するには、 製造手法の精度向上が課題となる。また、バックライトな しでは視認性が低く、設置時には電源の確保が課題と なる。

本技法では背景に応じたテクスチャに情報が溶け込む情報表示方法を開発した。景観を損ねうる情報、例 えば直線的で景観に異質な見た目をもつ QR コードを 表示するメディアとしての展望が考えられる。また、ダイ ナミックな動きや奥行き感によって目を引くことも本技法 の特徴にある。誘目性と景観との調和との両立を図る OOH メディアとしての展望が考えられる。

参考文献

- 京都市都市計画局. 京の景観ガイドライン 広告物編. <u>https://www.city.kyoto.lg.jp/tokei/cmsfiles/conte</u> <u>nts/0000056/56450/0407guidelinerink.pdf</u>.(参照 2023-09-30)
- クロス新宿ビジョン.新宿東口の猫【公式】. <u>https://vision.xspace.tokyo/3dcat/</u>.(参照 2023-09-30)
- Sylvain M. Chosson and Roger D. Hersch. 2015. Beating Shapes Relying on Moiré Level Lines. ACM Trans. Graph. 34, 1, Article 9 (dec 2015), 11 pages.
- Pei-Hen Tsai and Yung-Yu Chuang. 2013. Target-Driven Moire Pattern Synthesis by Phase Modulation. Proceedings of the IEEE International Conference on Computer Vision, 1912-1919. https://doi.org/10.1109/ICCV.2013.240
- 4. Hao Pan, Yi-Chao Chen, Lanqing Yang, Guangtao Xue, Chuang-Wen You, and Xiaoyu Ji. 2019.

MQRCode: Secure QR Code Using Nonlinearity of Spatial Frequency in Light. In The 25th Annual International Conference on Mobile Computing and Networking. Association for Computing Machinery, New York, NY, USA, Article 27, 18 pages. https://doi.org/10.1145/3300061.3345428

5. Stanford Computer Graphics Laboratory. The Stanford 3D Scanning Repository. <u>http://graphics.stanford.edu/data/3Dscanrep/</u> (参照 2023-09-30)